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In this paper a new hierarchical functions set is proposed to predict flexural motion of
plate-like structures in the medium frequency range. This functions set is built from
trigonometric functions instead of polynomials as classically encountered in the literature.
It is shown that such a trigonometric set presents all the advantages of a classical
hierarchical polynomials set and additional ones which are of interest if very high order
functions are intended to be used. It is stated that this new trigonometric set can be used
at very high orders, up to 2048 without taking care of computer round-off errors, while
the polynomials set fail, at order 46 because of the limited numerical dynamics of
computers. This trigonometric set can be easily implemented on a computer. It does not
require quadruple precision pre-computed arrays. Only a very low number (which does not
depend on the function order) of basic operations is needed when calling such functions.
Moreover, it is shown that this trigonometric set presents a better convergence rate than
polynomials when predicting high order natural flexural modes of rectangular plates with
any boundary conditions.
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1. INTRODUCTION

The p-version of the finite element method has been of growing interest over the past 25
years. In the p-version of the finite element method, the mesh of the structure is fixed and
the degree p of the interpolation functions is progressively increased until the desired
degree of convergence is reached. The p-version of the finite element method presents many
advantages compared with the classical finite element method (called the h-version, in
which h is the maximum diameter of the element). (1) The mesh of the structure has to
be generated one time for all; then convergence is reached by increasing the p-order. (2)
Input data can be reduced to the minimum, which greatly simplifies pre-post-processing.
(3) Adaptative processes for reaching convergence can be realized by increasing
automatically the order p, which is easier than adaptative meshing.

A particular class of the p-version of the finite element method, the so-called Hierarchic
Finite Elements Method (HFEM), presents a supplementary advantage, which is that the
interpolation functions set of order pmax constitutes a subset of the interpolation functions
set of order (pmax +1). Consequently, the mass and stiffness matrix elements which were
calculated for the (p) order set can be re-used for the (p+1) order set. This is the reason
why such elements are called ‘‘hierarchical’’. Many authors have explored the p-version
of the finite element method [1–6]. They have demonstrated its superior efficiency to reach
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convergence [3, 7], and to deal with singularities [3] in comparison with the classical
h-version of the finite element method.

HFEM seems to be an attractive method to treat vibrations problems in the
mid-frequency range where the structure’s vibratory fields have very short wavelengths but
where they are not yet sufficiently diffused to be described with statistical analysis methods
[8]. Reaching mid-frequency range with classical FEM seems to be quite difficult as, using
six nodes per wavelength, it leads to huge unmanageable data sets. Moreover, in the
mid-frequency range, it is not always useful to obtain all displacements over a very fine
grid, as in practice they are not measured with so much detail. Only mean quadratic
displacement over small surfaces (having the length of some wavelengths) are needed.
Using HFEM, such mean information could be obtained by using an ordinary mesh and
very high order interpolation functions sets. Then output data could contain only mean
quadratic levels over the ordinary mesh elementary surfaces.

Unfortunately boosting HFEM to very high order seems to be difficult. In practice,
interpolation functions are polynomials constructed from Jacobi polynomials [9],
integrated Legendre polynomials [2, 3, 10–12] or the natural Taylor’s basis {xn} [13]. As
has been pointed out in the literature, the calculation of high order polynomials coefficients
require great care due to computer’s round-off errors. That is why some authors have used
symbolic computing to calculate high order polynomials coefficients and matrix elements
[9–12]. To the author’s knowledge, the highest p degree which has been treated using
HFEM is 19 [12]. Actually, symbolic computing permits one to circumvent round-off
errors when calculating polynomial coefficients, and matrix elements; however, as will be
shown in this paper, even if one takes care of the computation of elements, very high order
polynomials (pq 45) will lead to ill-conditioned mass and stiffness matrices because of the
high numerical dynamics of the polynomial coefficients and the limited numerical dynamics
of the computers used.

In this paper a new hierarchical interpolation functions set is proposed which permits
one to reach the mid-frequency range without being restrained by the limited numerical
dynamics of the computer and which requires no particular care of round-off errors. The
key to the numerical stability of this new functions set is very simple. The maximum
approximation order pmax of a functions set is not related to the power of a polynomial
but to the number of oscillations of a trigonometric function. Thus, the pmax order seems
to have no limitations when implementing this trigonometric set on a computer. This
trigonometric set also presents other advantages. (1) The inner smoothness of the solution
is ensured, as these functions are indefinitely derivable. (2) Mass and stiffness matrix
elements are given by exact analytical expressions which are easy to calculate, so that no
pre-computed arrays are needed. (3) No recursive formula are used, so that cumulative
errors do not occur. (4) For bending problems, this trigonometric set presents ‘‘natural
wavelengths’’ which permit a better convergence rate for high order structure modes.

This paper is organized as follows: in section 2, a classical hierarchic polynomials set
built from integrated Legendre polynomials introduced by Zhu [2] and recently used by
Bardell [10–12] is presented. Bardell’s work [10] on the rectangular flat plate with any
boundary conditions is summarized. Then, it is shown that this polynomials set leads to
numerical problems when very high order (pq 45) polynomials are considered. In section
3, the proposed trigonometric set is presented and compared with the polynomials set. It
is found that this trigonometric set is numerically more stable than the polynomials set.
In section 4, the convergence rates of the polynomials set and the trigonometric set are
compared in the particular cases of simply supported and free rectangular plates. It is
shown that in both cases, the trigonometric set permits a better convergence rate for high
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order modes. A very simple wavelength criterion is pointed out which allows one to use
this trigonometric set with good accuracy.

2. POLYNOMIALS SET

In this section, a hierarchic polynomials set is presented. This polynomials set is built
from integrated Legendre polynomials. To the knowledge of the authors, this polynomials
set was initially presented by Zhu [2]. More recently, Bardell has used this set to predict
natural flexural vibrations of rectangular plates [10] and skew plates [12]. The plate is
considered as a single hierarchical finite element, and boundary conditions such as ‘‘simply
supported’’, ‘‘clamped’’, ‘‘free’’ and even ‘‘point supported/clamped in corners’’ can be
taken into account by a judicious selection of the basis functions.

2.1.      

The Legendre orthogonal polynomials can be expressed using Rodrigues’ formula [14]
as

Pm (j)=
1

m!(−2)m

dm

djm {(1− j2)m}, j $ [−1, 1]. (1)

Legendre polynomials satisfy the orthogonal relation

g
1

−1

Pm (j)Pn (j) dj=
2

2n+1
dnm . (2)

By expanding equation (1) using the binomial theorem, the following explicit expression
can be obtained [2]:

Pm (j)= s
m/2

n=0

(−1)n

2nn!
(2m−2n−1)!!

(m−2n)!
jm−2n, (3)

where m!!=m(m−2). . .(2 or 1), 0!!=1, (−1)!!=1, and m/2 denotes its own integer part.
Let Ps

m (j) denotes the following s-multiple integral of Pm− s (j):
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Substituting equation (3) into equation (4), the following explicit expression for Ps
m (j) is

obtained:

Ps
m (j)= s

m/2

n=0

(−1)n

2nn!
(2m−2n−2s−1)!!

(m−2n)!
jm−2n. (5)

To the author’s knowledge, this last Ps
m (j) polynomials set has been first presented by

Zhu [2].
{Ps

m (j)} polynomials sets are of interest since they can be used as hierarchical shape
functions of Cs−1 continuity as all their derivatives of order lower than s vanish at j=21.
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T 1

The first ten Bardell’s polynomials (using doubly integrated Legendre
polynomials for order greater than 4)
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f10(j)= 15
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384j
9

2.2.          

Bardell [10] has proposed a hierarchical polynomials set dedicated to plate bending
problems. He built a hierarchical shape functions of C1 continuity from Zhu’s polynomials
{Ps

m (j)}, considering the particular value s=2 [2].

2.2.1. Bardell’s polynomials set
Bardell [10] has predicted bending modes of a rectangular plate (with any boundary

conditions) by considering the rectangular plate as a single element and a hierarchical
polynomials set. A first part of this polynomials set is built from the classical FEM first
four cubic displacement functions:
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Figure 1. Round-off errors when calculating high order Bardell’s polynomials. (a) Order 87; (b) order 88; (c)
order 90; (d) order 100.
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2 −

3
4j+ 1

4j
3, f2(j)=1

8 −
1
8j− 1

8j
2 + 1

8j
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A second part of the polynomials set is built from equation (5), with s=2, as follows:

fr (j)0Ps=2
m= r−1(j)= s

(r−1)/2

n=0

(−1)n

2nn!
(2r−2n−7)!!
(r−2n−1)!

jr−2n−1, rq 4. (10)

This basis set used by Bardell is summarized in Table 1. It can be seen that all functions
of the higher part of the basis set (rq 4) have zero displacement and zero slope at each
end of the element (because of the use of s=2 in equation (5)). Consequently, boundary
conditions on displacement and rotation at the edges of the plate are entirely controlled
by the first four basis functions. Thus, particular boundary conditions such as simply
supported, clamped and point supported/clamped in corners can be treated only by
removing some basis functions from this polynomials set.

2.2.2. Natural modes of a rectangular plate with any boundary conditions
Consider a flat homogeneous rectangular plate in pure bending motion. In Cartesian

co-ordinates, the plate domain is S= {M(x, y)/(x, y)$ [0, a]× [0, b]}. The plate normal
displacement is sought as an expansion on Bardell’s basis {fr (j)} (given in Table 1):

w(j, h)= s
p

r=1

s
p

s=1

qrs fr (j)fs (h), (11)

where j and h are non-dimensional parameters such that x=(1+ j)a/2 and
y=(1+ h)b/2. The strain and kinetic energy are classically expressed for pure bending
thin plates and small displacements as
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+2(1− n) 0ab1
2

0 12w
1j1h1

2

% dj dh, (12)

T= 1
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−1 01w
1t1

2

dj dh, (13)

where h is the plate thickness, r is the plate density, n is the plate Poisson ratio, E is Young’s
modulus and D is the classical flexural rigidity.

The unknown coefficients qrs relative to the free motion of the plate are determined from
Lagrange’s equations:

1U
1qrs

+
d
dt

1T
1q̇rs

=0, for r=1, 2, . . . , p, s=1, 2, . . . , p. (14)

Substituting equations (11), (12) and (13) into equation (14), the classical eigenvalues
problem is obtained:

[kjkrs ]{qrs}=v2[Mjkrs ]{qrs}, (15)

where [M] and [K] are the mass and stiffness matrices, and where

Mjkrs =
rhab

4
I00
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in which integrals I ab
jr are defined by

I ab
jr =g

1

−1

f (a)
j f (b)

r dj, (18)

where (a) and (b) denote the order of derivatives (a, b=0, 1, 2).
Bardell has used this formulation to predict free vibrations of rectangular plates with

ten different boundary conditions (including point support). He has validated his approach
in comparison with literature results [15–19] for the first four flexural modes, using the first
ten basis functions presented in Table 1. He has used symbolic computing [11] to calculate
polynomials coefficients and integrals I ab

jr defined in equation (18).
It was interesting to boost this method to higher orders to predict more than the first

four flexural modes. Thus, the authors have implemented this method in a FORTRAN
program to test it at higher orders.

2.3.      

2.3.1. Implementing Bardell’s approach in a FORTRAN program
The polynomial coefficients given in equation (10) were calculated in quadruple precision

while taking care systematically to simplify integers quotients, term by term, each time that
it was possible (as is done in symbolic computing software). Mass and stiffness elements
were also assembled in quadruple precision. Then, the eigenvalues problem (15) was solved
in double precision using EISPACK package FORTRAN routines. It was found that the
polynomials set {fr (j)} could be boosted up to order p=45. For orders higher than 45,
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mass and stiffness matrices were found to be ill-conditioned. The origin of this numerical
problem can be explained more deeply as shown in the following sections.

2.3.2. Large numerical dynamic of the coefficients
In Figure 1 very high order fr (j) polynomials are plotted, for four different values of

r ((a) r=87, (b) r=88, (c) r=90 and (d) r=100). In Figure 1(a), it can be seen that
f87(j) presents some errors at both ends, j=21. In Figures 1(b)–(d) it is shown that these
errors are growing with the order r and that their magnitudes become greater than the
maximum magnitude of the exact function. It is to be noted that integral terms I ab

jr defined
in equation (18) are precisely calculated from integrated polynomial values at both ends
j=21, and consequently they also become erroneous for very high order r.

Erroneous values at both ends are due to the very large numerical dynamic of
polynomial coefficients. Actually, as can be seen in equation (10), fr (j) polynomial
coefficients are defined by the factorial functions ratio. This leads to a very high dynamic
between the smaller and the greater coefficient of a high order polynomial. This effect is
described in Figure 2, where the coefficients of four different fr (j) polynomials are plotted.
It can be seen that for r=10 (as in Bardell’s work [10]), the coefficients numerical dynamic
is less than 100, so that numerical problems do not occur. However, for r=45, the
coefficients numerical dynamic is near 1016. Using double precision, a computer round-off
error is precisely situated between 10−17 and 10−16 (it is machine dependent). Therefore,
it is clear that in such a case, even if polynomial coefficients and mass/stiffness matrix
elements are calculated exactly and rigorously, any eigenvalues problem (or linear system
resolution) software will fail to find eigenvectors (or solution vectors).

2.3.3. Numerically non-positive definite scalar product
Another way to show that fr (j) polynomials cannot be used at very high orders is that,

theoretically, the matrix I 00
jr (defined in equation (18)) represents a scalar product, so

theoretically I 00
jr is symmetric positive definite and must have only real positive non-zero

Figure 2. The numerical dynamic of coefficients an relative to Bardell’s polynomials. an are such that
fr(j)=ar−1

n=0anjn: q, r=10; Q, r=45; w, r=87; W, r=100.
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Figure 3. Eigenvalues of the matrix I 00
jr . w, Using the first 45 Bardell’s polynomials; W, using the first 46

Bardell’s polynomials.

eigenvalues. However, numerically as summarized in Figure 3, solving the eigenvalues
problem of I00

jr , negative eigenvalues can be found. In Figure 3 two different sets of
eigenvalues are reported, relative to two different {fr (j)} polynomials bases; a first {fr (j)}
set containing fr (j) functions for r=1 to 45, and a second set containing fr (j) functions
for r=1 to 46. It can be seen that in the case r=1 to 46, the first eigenvalue is a negative
one, so I 00

jr is no longer numerically positive definitive. This is the reason why the free
vibrations problem relative to the rectangular plate defined in equation (15) was failing
for rq 45.

T 2

Table of coefficients (ar , br , cr , dr) relative to the trigonometric set {cr(j)} (where
cr(j)=sin (arj+ br) sin (crj+ dr))

Order Coefficient, Coefficient, Coefficient, Coefficient,
r ar br cr dr

1 p
4

3p
4

p
4

3p
4

2 p
4

3p
4 −p

2 −3p
2

3 p
4 −3p

4
p
4 −3p

4

4 p
4 −3p

4
p
2 −3p

2

rq 4 p
2 (r−4) p

2 (r−4) p
2

p
2
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In summary, Bardell’s polynomials set {fr (j)} is of interest since all functions of order
higher than four have no influence on the boundary conditions relative to displacement
and rotation. Moreover, this set is a hierarchical one. However, it is stated that the use
of such polynomials is limited to a maximum order of 45 since they present too large a
numerical dynamic of their coefficients.

3. A TRIGONOMETRIC SET

The authors were interested in having a hierarchical functions set similar to the one
proposed by Bardell, but that could be used to higher order than 45 and without being
constrained to take care of numerical round-off errors. It was found that such a basis can
be built from trigonometric functions.

3.1.       

Consider the trigonometric set {cr (j)} defined as

cr (j)=sin (arj+ br ) sin (crj+ dr ), r=1, 2, . . . , (19)

where the coefficients ar , br , cr and dr are given in Table 2.
The first ten functions cr (j) defined by equation (19) are reported in Table 3, in

comparison with the ten first Bardell polynomials fr (j). In terms of shapes, this proposed
trigonometric set presents the same tendency as Bardell’s polynomials: (1) the first four
functions permit one to satisfy any boundary conditions; (2) all functions of order higher
than four have zero displacement and zero slope at both ends j=21; (3) for rq 4, these
functions have a number ‘‘r−5’’ of simple roots in the inner domain ]−1, +1[.

3.2.         

This trigonometric set presents the advantages of Bardell’s polynomials and interesting
additional ones. As the order of a cr (j) function is not related to a power of j but to the
number of oscillations of a trigonometric function it is numerically more stable than
polynomials.

First, round-off errors at both ends j=21 do not occur. In Figure 4, the functions
c100(j) and c2048(j) are plotted. It can be observed that these functions actually have zero
displacement and slope at both ends, z=21. It is to be noted that the function c2048(j)
has been plotted only in the domain [−1, −0·98] in order to see details that cannot be
observed when plotting it in the full domain [−1, 1].

Second, the {cr (j)} set leads to well conditioned matrices, even considering very
high order functions. Using very high order trigonometric functions {cr (j)} instead of
polynomials {fr (j)} in the definition (18) of the matrix I 00

jr , a numerically symmetric
positive definitive matrix is actually obtained. In Figure 5, the eigenvalues of the
matrix I 00

jr using 2048 trigonometric functions are plotted. It can be seen that all the
eigenvalues are real and strictly positive. Therefore, in opposition with polynomials,
it is stated that this new I 00

jr matrix actually represents a scalar product up to order
2048 (at least), when polynomials fail for r=46. It is noted that this 2048×2048 I 00

jr

matrix was assembled using only double precision and not quadruple precision as for
the polynomials set. Therefore, definitely, the trigonometric set is numerically more
stable than the polynomials set.

A third addtitional advantage of the {cr (j)} trigonometric set is that a very low number
of basic operation are required to calculate it. Looking at the definition (19) of cr , it can
be seen that only two additions, two multiplications and two calls to intrinsic functions
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T 3

A comparison between the trigonometric set and the polynomials set

Function Trigonometric set cr(j) Polynomials set fr(j)

1

2

3

4

5

6

7

8

9

10

are needed for any values of the order r. At the opposite extreme, using a polynomials
set, the number of basic operations is increasing with the order r and a large number of
coefficients have to be stored into pre-computed arrays. Therefore, using trigonometric
functions, running time and memory are saved.

It has been shown in this section that the proposed trigonometric set {cr (j)} is very
close to Bardell’s polynomials {fr (j)} in terms of shapes, but it is numerically greatly
more stable than the polynomials. Moreover, a high order {cr (j)} trigonometric set
can be implemented in a program in an easier way than polynomials.
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Figure 4. An example of high order trigonometric functions cr(j) for (a) r=100, and (b) r=2048.

4. APPLICATION TO THE RECTANGULAR PLATE FLEXURAL VIBRATIONS

Being numerically stable is not the only condition that is required. It must be verified
that the trigonometric set is sufficiently complete to allow the convergence of all the natural
modes of the structure. It will be shown in this section that the {cr (j)} set permits actually
to predict natural modes, in particular cases of a simply supported plate and a free plate.
Also, convergence rates of the {cr (j)} and {fr (j)} sets will be compared. It must be
mentioned that, strictly, the equations that govern the plate motion at low frequencies are
not valid in the mid-frequency range. Other effects, such as rotational inertia and shear
deformation, will now be present which will modify the vibrational behaviour quite
significantly. These effects are neglected in this paper, as the principal aim is to provide
a simple comparison with other work. However, if a serious analysis of a flat plate at such
frequencies is to be undertaken, then the additional effects mentioned will have to be
included.

4.1.  

4.1.1. The studied plate
In both following sections, a rectangular steel plate will be considered with two different

configurations of boundary conditions. A first configuration has all edges simply supported
(denoted S–S–S–S), and a second one has all edges free (denoted F–F–F–F). The
geometrical and mechanical characteristics of the studied plate are: the plate dimensions

Figure 5. Eigenvalues of the matrix I 00
jr using the first 2048 trigonometric functions {cr(j)}.
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Figure 6. The convergence of eigenfrequencies of a S–S–S–S plate using polynomials (w1 ) and trigonometric
(w2 ) sets of 1024 basis functions. (w3 is analytical reference).

are, a=1·4 m, b=1 m, h=0·003 m; Young’s modulus, E=2×1011 Pa; Poisson ratio,
n=0·3; and density, r=7800 kg m−3.

4.1.2. Selection of the two-dimensional basis functions
Let us denote by r and s the indices relative to the x-axis and y-axis when expanding

the plate normal displacement on the {cr (j)} or {fr (j)} set. In both cases, the normal
displacements can be expressed as

w(j, h)= s
(r,s)$V

qf
rs f	 rs (j, h) (20)

or

w(j, h)= s
(r,s)$V

qc
rsc	 rs (j, h), (21)

where {f	 rs (j, h)} or {c	 rs (j, h)} are two-dimensional functions built from the {fr (j)} or
{cr (j)} set, respectively, as follows:

f	 rs (j, h)0fr (j)fs (h), c	 rs (j, h)0cr (j)cs (h), (22, 23)

and where V denotes the set of selected values of couples (r, s).
In the selection of (r, s) couples, the authors have not chosen the ‘‘square selection’’

proposed by Bardell, V0 {(r, s)$ [1, 2, . . . , 10]×[1, 2, . . . , 10]}. For a better convergence,
they have used a ‘‘quarter disc selection’’ which can be summarized as follows.

Let one denote by Nr the number of simple roots of the cr (j) or fr (j) function in the
inner domain ]−1, 1[ (for example, in Table 3, the c8(j) and f8(j) functions have three
simple roots in the inner domain ]−1, 1[). The set V of the retained couple (r, s) is

V06(r, s) such that 0Nr +1
a 1

2

+0Ns +1
b 1

2

E k2
max7, (24)
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where kmax is a constant that can be adjusted, depending on the number of basis functions
cr (j) or fr (j) that are to be used.

4.2.  ––– 

Looking at Table 3, it is evident that the case of the simply supported plate can be
treated by only removing functions of order r=1 and r=3 from the full set. Then the
natural modes of the S–S–S–S plate can be calculated by solving the eigenvalues problem
(15). It was done with a trigonometric set {c	 rs (j, h)} and a Bardell’s polynomial set
{f	 rs (j, h)}, both containing 1024 basis functions, selected using criterion (24) (excluding
r, s=1 and r, s=3). The convergence of both approaches is discussed in the followng
sections.

4.2.1. Convergence of eigenfrequencies
In Figure 6, the eigenfrequencies obtained using the polynomials and the trigonometric

set are reported and compared with the classical analytical solution. It can be seen that
the trigonometric set allows a better convergence than the polynomials set. Convergence
of eigenfrequencies is satisfying up to 6000 Hz (880th mode) with the trigonometric set,
while the polynomials set only reaches modes up to the 400th mode (2800 Hz). This
difference in convergence rate can be explained in terms of the ‘‘minimum wavelength’’
contained in the functions set, as shown in the next section.

4.2.2. Minimum wavelength criterion
By choosing 1024 basis functions following criterion (24), the maximum order r is found

to be 44. In Figure 7, the trigonometric functions c44 and the polynomial f44 are plotted.
It can be seen that these two functions are very similar; however, there is one important
difference. As the trigonometric function is built from sine functions, there is a constant
step between two successive roots. The polynomials set is built from integrated Legendre
polynomials and it can be observed that there is not a constant distance between two

Figure 7. The minimum wavelengths ltrig
min and lpol

min for the trigonometric (dashed line) and polynomial (solid
line) set, respectively.
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Figure 8. Errors (in per cent) on the eigenfrequencies of a S–S–S–S plate using polynomials (. . . . . .) and
trigonometric (———) sets of 1024 basis functions.

successive roots. This distance is smaller near the ends and larger near the centre. Let lmin

denote the longest distance between two successive roots of the higher order function of
the functions set {cr (j)} or {fr (j)}. It is clear that a structure mode shape having a
wavelength smaller than lmin =2lmin cannot be represented correctly in this basis set.
Consequently, such a mode shape will have a poor convergence using this basis set. This
remark leads to a minimum wavelength criterion that can be simply expressed for flexural
waves.

For the infinite plate, the speed of flexural waves is related to the angular frequency by
the classical equation.

cf (v)=(D/rh)1/4v1/2 (25)

and the wavelength of flexural waves is given by

lf (v)=2pcf (v)/v=2p(D/rh)1/4v1/2. (26)

Using this last relation, a criterion can be used to predict the convergence rate of a given
functions set. This criterion can be summarized as follows. If lmin is the minimum
wavelength of the functions set {cr (j)} or {fr (j)}, only the natural flexural modes of the
rectangular plate having a natural angular frequency lower than vmax can be predicted,
were vmax is such that

lf (vmax )=lmin c lmin =2p(D/rh)1/4v1/2
max . (27)

Using this criterion, the convergence of the S–S–S–S plate eigenfrequencies of Figure 6 can
be explained.

For the polynomials set, lmin =10·6 cm, which leads to a fmax (=vmax /2p)12570 Hz
corresponding to the 370th mode. For the trigonometric set, lmin =7 cm, which leads to
a fmax 1 5890 Hz corresponding to the 850th mode. This is in quite good agreement with
what is shown in Figure 6.
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In Figure 8, the convergence rates of the polynomials and trigonometric set are reported,
in terms of percentage of error of eigenfrequencies. It can be seen that the criterion that
is proposed actually allows one to predict a maximum mode order on which a convergence
rate lower than 1·5% is assured.

It must be noted that for modes lower than 300, the polynomial set permits a better
convergence than the trigonometric set. This is due to the fact that the trigonometric set
is not a rigorously complete set. This trigonometric set presents the same behaviour as
Fourier series; it is complete in the sense of the mean square convergence. However, in
practice, the trigonometric set allows one to obtain a good convergence rate and to go
further in the mode sequence.

4.2.3. Convergence of mode shapes
In Figure 9, the 370th mode shape (2571 Hz) of the S–S–S–S plate using the polynomials

set is presented. It is shown that this mode shape is actually well predicted as the classical
result of sine functions is retrieved with good precision, even near the edges (the
convergence rate of the eigenfrequency is 0·22%).

In Figure 10, the 850th mode shape (5894 Hz) of the S–S–S–S plate using the
trigonometric set is reported. It can be seen that this mode is acceptable, but there is a

Figure 9. The mode shapes of the 370th mode of the S–S–S–S plate, using the {fr(j)} polynomial set. (a) 3-D
view; (b) top view; (c) side view along y-axis; (d) side view along x-axis.
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Figure 10. The mode shapes of the 850th mode of the S–S–S–S plate, using the {cr(j)} trigonometric set.
(a)–(d) as in Figure 9.

slight lack of precision near the edges: this lack can be related to the convergence rate of
the eigenfrequency which is 1·45%. However, in terms of mean quadratic velocity, such
a shape will be quite acceptable. The 370th mode is reported in Figure 11 (using the
trigonometric set): it can be seen that the convergence in mode shape is as good as using
the polynomial set (even near the edges).

In summary, it has been shown in this section that in the case of the S–S–S–S plate,
the trigonometric set allows a convergence which is at least as good as the one obtained
with a polynomials set. Moreover, this trigonometric set permits us to obtain higher order
modes than with polynomials, even if a small lack of precision near the edges can be
observed (only for high order modes.)

4.3.  ––– 

In the same way, the natural modes of the F–F–F–F plate can be calculated by solving
the eigenvalues problem (15), using the full trigonometric or polynomials set (including
the first four functions in Table 3). It was done considering 1024 basis functions, selected
using criterion (24).



1.4

(b)
0.2 0.4 0.6 0.8

1.2

1.0

0.8

0.6

0.4

0.2

1.00.0

(a)

(c) (d)

    649

In the case of the F–F–F–F plate, there are no analytical solutions and reference
eigenfrequencies are needed to study convergence. Therefore, the reference eigen-
frequencies were obtained by using the trigonometric set with 1600 basis functions.

It must be noted that using 1600 basis functions selected following the quarter disc
criterion (24) with the plate dimensions a=1·4 m, b=1 m, the maximum r order (along
the x-axis) is 52 and the maximum s order (along the y-axis) is 38. Such a case is impossible
to treat with polynomials using double precision since, as shown previously, polynomials
are limited to order 45.

4.3.1. Convergence of eigenfrequencies
In Figure 12, eigenfrequencies of the F–F–F–F plate calculated using a polynomials and

a trigonometric set of 1024 functions are plotted. It can be seen that trigonometric and
polynomials set present the same tendencies in convergence as those observed for the
S–S–S–S plate. The same minimum wavelength criterion can be used. However, the
minimum wavelength is not the same as for the S–S–S–S plate. Actually, in this case,
functions of order r=1 and r=3 have not been removed from full sets, so considering
the same number (1024) of two-dimensional functions {c	 rs (j, h)} or {f	 rs (j, h)}, the higher
order for r is now 41 instead of 44. This leads to a minimum wavelength of 7·57 cm for
the trigonometric set and 11·34 cm for the polynomials set. Then, using equation (27), the

Figure 11. The mode shapes of the 370th mode of the S–S–S–S plate, using the {cr(j)} trigonometric set.
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Figure 12. The convergence of eigenfrequencies of a F–F–F–F plate, using polynomials (w1 ) and trigonometric
(w2 ) sets of 1024 basis functions. (w3 is reference).

maximum accurate frequency is 5043·6 Hz (1820th mode) for the trigonometric set and
2246 Hz (1380th mode) for the polynomials set.

In Figure 13, the convergence rates (in terms of percentage of eigenfrequencies) of the
polynomials and trigonometric set are compared. As it was previously mentioned, the
reference eigenfrequencies are not exact values but the values obtained by using the
trigonometric set with 1600 basis functions. That is why, in Figure 13, negative relative
errors can be observed up to the 300th mode in the case of the polynomials set. For this

Figure 13. Errors (in per cent) on the eigenfrequencies of F–F–F–F plate using polynomials (. . . . . .) and
trigonometric (———) sets of 1024 basis functions.
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Figure 14. The shapes of the 380th eigenfunction obtained using the polynomials set ((a) and (c)) compared
with the 383rd mode of the F–F–F–F plate ((b) and (d)).

first 300 modes, the polynomials set presents a better convergence than the trigonometric
set even if 1600 trigonometric basis functions are used: however, over the 300th mode, the
polynomials approach rapidly fails while the trigonometric approach still works up to
800th modes.

4.3.2. Convergence of mode shapes
In Figure 14, the mode shape of the 380th mode (at 2275 Hz) calculated with the

polynomials set is presented in comparison with the reference mode shape obtained using
the trigonometric set with 1600 basis functions. Using the minimum wavelength criterion
previously exposed, this 380th mode should be converged. Looking at Figure 14, it can
be seen that this is not exactly the case. Also, looking at Figure 13 it can be observed
that actually, even in terms of convergence of eigenfrequency, the minimum wavelength
criterion seems a little too optimistic in this case. However, this criterion is a good
estimation since, as is shown in Figure 15, the 367th mode is actually converged. So,
the minimum wavelength criterion has predicted the maximum order of converged modes
with an error of only 3%.
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In Figure 16, the 820th mode shape (at 5062 Hz) of the F–F–F–F plate calculated with
the trigonometric set is compared with the reference mode shape. It can be seen that this
mode converged, so for the trigonometric set, the minimum wavelength criterion is good.

In this section, it has been shown that although it is not a rigorously complete set, the
{cr (j)} proposed trigonometric set is sufficiently complete (in the sense of the mean square
convergence) to predict flexural modes of a rectangular plate. A minimum wavelength
criterion permits one to predict with good accuracy the maximum mode order that can
be predicted using a given functions set. Moreover, it was stated that the {cr (j)} set
presents some additional advantages compared with polynomials.

(1) The trigonometric set can go beyond order 45, even considering the eigenvalues
problem relative to plate free vibrations.

(2) For the same number of basis functions, the trigonometric set allows one to predict
higher order modes than the polynomials set (1800 instead of 1300, considering 1024
basis functions).

(3) For a given frequency range, the trigonometric approach requires less cpu time and
memory than the polynomials approach. Typically, to predict the natural modes of the

Figure 15. The shapes of the 367th eigenfunction obtained using the polynomial set ((a) and (c)) compared
with the 367th mode of the F–F–F–F plate ((b) and (d)).
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Figure 16. The 820th mode shapes of the F–F–F–F plate obtained with the trigonometric set. The comparison
uses (a) 1024 and (b) 1600 basis functions.

plate presented in section 4.4.1. up to 2800 Hz, 1024 polynomials functions are required
(24 MB, 13 min, 47 s*) while only 547 trigonometric functions are needed (7 MB and
1 min, 32 s*).

(4) Post-processing time can be reduced using the trigonometric set. For example,
generating a mode shape file (such as the ones shown in Figure 9 and thereafter) using
1024 polynomials basis functions requires 4 min and 49 s*, while generating a mode shape
file using 1024 trigonometric basis functions requires only 54 s* (a time ratio of 5·3).
Moreover, using only 547 trigonometric functions permits one to obtain the same number
of converged modes as when 1024 polynomials functions. Then, using 547 trigonometric
functions, only 29 s* is required to generate a mode shape file (a time ratio of 9·8).

5. CONCLUSIONS

A new hierarchical functions set has been proposed in this paper which allows one to
treat flexural motion of plate-like structures. This set presents all the advantages of
hierarchical polynomials that can be found in the literature, particularly the fact that

* Using a 50 Megaflops, 64 MB RISC machine.
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boundary conditions of an element are only defined by the first four functions. A
‘‘minimum wavelength’’ criterion was found to predict with a good accuracy the maximum
mode order that can be predicted using a given functions set (trigonometric or
polynomials).

Moreover, it was shown that this new basis set presents the following additional
advantages that cannot be obtained from polynomials.

(1) Great numerical stability permits one to consider very high orders up to 2048 (at
least) using only double precision, while polynomials fail at order 46.

(2) Convergence is better due to the fact that oscillations of trigonometric functions are
regular on the entire domain [−1, +1] (constant distance between two successive roots).
This permits an homogeneous ‘‘resolution’’ over the entire domain, while Legendre
polynomials present a high order resolution near the boundary domain and a poor
resolution in the centre of the domain.

(3) Both memory and cpu time are saved since no quadruple precision pre-computed
arrays are required, and only a few (and not order dependent) basic operations are needed
to compute a trigonometric function.

Other basis functions could be built from trigonometric functions, dedicated to problems
other than flexion waves (in plane motion, etc.). These basis functions would probably have
the same properties of numerical stability and easy numerical implementation.
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